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Abstract

A micromechanical model is proposed for the prediction of nonlinearly thermoelastic, mul-

tiphase particulate and/or continuous reinforced composites in which any or all constituents

exhibit large strain (finite deformation). The analysis provides closed-form representations for

the instantaneous mechanical and thermal concentration tensors as well as the effective tangent

mechanical and thermal properties of the composite. The micromechanical model predictions

are assessed by a comparison with an analytical spherical composite model, valid for hydrosta-

tic loadings only. Very good agreement between the two approaches were obtained. Similarly,

results demonstrating the effects of nonlinearity are given for particulate and continuous fiber

reinforced S_C/AI composites. Finally, the nonlinear response of cellular solids idealized by

open-cell and closed-cell structures are compared and contrasted.

1 Introduction

The micromechanical prediction of the overall behavior of nonlinearly elastic composites from the

knowledge of the properties of the phases which exhibit finite deformation is complicated due to the

need to analyze the nonlinear behavior of the materials involved. For nonlinearly elastic composites,

results for the overall bulk modulus were given by Ogden(1974) for the case of initially spherical

inclusions, dilutely suspended in the matrix, in such a way that there is no mutual interaction

between the spheres. Chen and Jiang(1993) considered the problem of finding the second ordcr

constants of a particulate composite by using a perturbation approach. More recently, Imam et

a1.(1995) determined the overall second order constants of an incompressible matrix containing
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a dilute concentration of incompressible spherical particles. It should be mentioned that using

variational principles, estimates and bounds for the overall properties of certain classes of nonlinear

composites have been found by Willis(1990), Talbot and Willis (1987) and Ponte Castaneda and

Willis(1988) for example.

The method of cells and its generalization, referred to as the generaliT, ed method of cells (GMC),

is a micromechanical model which is capable of predicting the overall behavior of continuous and

discontinuous (particulate) fiber reinforced composites given a knowledge of the properties of the

individual phases. A review of the original method of cells was given by Aboudi(1989). More

recently this review has been updated by Aboudi (1996), wherein critical assessments of the method,

its generalization, and its application by various researchers are outlined.

In the framework of the method of cells, the prediction of nonlinearly elastic composites was

presented by Aboudi (1986). In particular, the overall behavior of a foam rubber consisting of

a continuum rubber matrix with voids was determined and contrasted with the measurements of

Blatz and Ko (1962). The incremental analysis utilized by Aboudi in 1986 was based on a secant

approach and required one to solve at every increment a system of nonlinear equations.

In this paper we propose, in the framework of the GMC, a multiphased micromechanical

analysis procedure based on a tangent approach, wherein each and every constituent can be a

nonlinear thermoelastic material exhibiting finite deformation. As a result of the tangent approach,

and in contrast to the previous secant approach, here one need only solve in each increment a system

of linear algebraic equations. Furthermore, in the course of the micromechanical analyses, the

instantaneous mechanical concentration tensor (which relates the local deformation gradient to the

global one) and effective mechanical tangent tensor (which relates the average stress increment to

the average deformation gradient increment), as well as, the instantaneous thermal concentration

tensor (which relates the local deformation to the applied temperature deviation) and effective

tangent thermal tensor (which relates the average stress increment to the applied temperature

deviation) are all established. Note, both the concentration and tangent tensors are given in a

closed-form manner in terms of the geometrical dimensions and material properties. It should be

emphasized that these instantaneous mechanical and thermal concentration and effective tangent

tensors cannot be established when the aforementioned secant approach is followed. Furthermore,

the estabfishment of the instantaneous concentration tensors is simply based on a solution of a

system of linear algebraic equations.

The validity of the proposed nonlinearly elastic GMC prediction is assessed by comparison with
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the response ofporous materialsobtained from an analyticalsphericalmodel (whose predictionis

validfor hydrostaticloadingonly).This comparison isperformed given three differentclassesof

nonlinearlycompressibleelasticmaterials,two of which are known as the harmonic materialand

the generalizedVarga material(Horgan, 1995).Good agreement between the analyticalspherical

model and GMC are shown forallthreeclassesof materialsgiven variousamounts of porosities.

Similarly,the response of nonlinearlyelasticparticulateand continuous fiberreinforcedSiC/AI

composites are calculated.These resultsdearly exhibitthe existingeffectsof the nonlinearityof

the phases and stronglysuggestthe need fordevelopingsuch a finitedeformation micromechanics

model, particularlywhen one isinterestedin predictingthe failureof such composite systems.

Finallythe capabilityofGMC topredictthe nonlinearresponseofopened- and closed-cellcellular

solids is illustrated.

2 Material Representation

The micromechanical modeling of a nonlinear thermoelastic composite is based on the knowledge

of the current stress tensor and temperature of the constituent materials as well as their tangent

tensors at the current state of deformation. For an isotropic thermoelastic nonlinear compressible

material, the internal energy is given in terms of the invariants of the Cauchy-Green deformation

tensor C and the entropy s. Thus the internal energy per unit mass of the material can bc

represented in terms of the three invariants /1, /2, and I3 of the Cauchy-Green deformation tensor,

and entropy s in the form:

w = w(xl, I2, I3, s) (1)

Let F denote the deformation gradient. The Cauchy-Green deformation tensor C is given by

C = FTF (2)

where the superscript T denotes the transpose operation, and the invarJants of C are

/I = trC -- Ci_ I

_2 = ½(tr_c- trC2) = }(__ C,_C_,)
a

/3 = det C = 6(C;, - 3C_iCijC i` + 2CiiCjkCki)

(3)

It should be noted that in this paper, the summation convention is implied for repeating Latin

indices.
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Let us denoteby S the 2nd (symmetric) Piola-Kirchhoff tensor. It follows that (e.g. Bland,

1969)
OW OW

s,j = _(_,j + -_j )

where po is the initial density of the material. Furthermore,

(a)

ow Olp
S_j = 2po Oi v OCij

(5)

where

= 6ij )

0C_j

..o.a. = h6_ - Gj
OC'_j

= I26_3 - 1_C_ + G_Ckj
OC_j

with 6ij being the Kronecker delta. Thus, the requested expression of S for a given material can

be readily determined for a given state of deformation.

The temperature, 0, is given in terms of the entropy per unit mass, s, by

OW
o = -- (6)

Os

With the help of this last equation, one can eliminate the entropy, s, by expressing it in terms of

the temperature, 0. This provides a new specific internal energy function W = W(I1, I2,/3, 0).

Now let us represent the constitutive law of the nonlinearly thermoelastic material in the incre-

mental form:

AS = 2DAC - rA0 (7)

where D and r denote the instantaneous mechanical and thermal tangent tensors, respectively.

The tangent tensor, D, of the material at the current instant of loading is determined from

+ _ = 4po 02W
Dijkl = OC_j OCt_ OC_jOCkt

(s)

In establishing the requested tangent modulus D for a given material, the following relations have

to be used:

02h
= 0

0212 t(4)
= ,_#6kt -- "_iSaoc,¢oc_,

02Ia r r(4)
= (I16k, - C_)6_ - C_k_ - _k_

aC#OCk_
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and

1

1
+ g (C,k_j,+ C,,_jk) (9)

1

The current thermal tangent tensor r is determined from

Fq = _ " 02W O2W
- oe =-P°(o_,_oo + oc,,o--_) (lO1

Five examples taken from the literature for representing the isotropie internal strain energy (IV)

in terms of the above three strain invariants (/_,/2, and Ia) and temperature (0) are given in Table

1. Four of the five models are defined as isothermal representations, whereas one is a nonisothermal

model. Clearly, the current tangent moduli D and r can be readily determined given the functional

form of the strain energy by using eqn.(8) and (10).

Tablel:Various representations for nonlinear elastic material behavior

Model (reference) Strain Energy (p0W)

r'/2 5)Blatz and Ko (1962) _(_ + 2 "a -

Murnaghan (1967) _ K12 - 2#/(2 + _ K1a

Blatz (1969)

St. Venant-Kirchhoff

(Bland, 1969)

Mooney-Rivlin

(Sussman and Bathe, 1987)

-2m K1 K2 + n K3

_[i1/2 _ ,,,_,,,2

_ - 2_,K_+ _[o =- (0o- _K,)21

CI(J1 - 3) + C2(J2 - 3) + _(Ja - I) 2

Material Constants

#

A, p, l,m,n

#, K, k

t90 , A, #, _, and r]

C1, C2, and _¢

where other invariants are J, = i=/i_/a

J_ = I_ I_

K,=½(I,-3)

K== ¼(-21,+ 12+a)

Ks= ½(I,- I=+ 13- I)

Finally, as the mieromechanical analysis described in the following section utilizes the first

Piola-Kirchhoff stress tensor T, instead of the second, we need to relate the displacement gradient
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and temperatureincrements to the corresponding first Piola-Kirchhoff stress increment. To this

end, we can use eqn.(2) in order to rewrite eqn. (7), and, after some manipulations obtain the

following:

AS = Q aF - ra0 (11)

where
1

Qijk; = _[Dijtp Fk_ + Dijpz Fkp] (12)

Given the fact that the relationship between the first and second Piola-Kirchhoff stresses is defined

as

T=S F T (13)

it follows, then, after some manipulations, that the desired incremental constitutive relation for the

considered nonlinear thermoelastic constituent material is:

AT = R AF-- HA8 (14)

where the current mechanical and thermal tangent tensors R and H are given by

R  s,t = Q pklF p + S. (15)

and

Hij ----FikFjk (16)

It is readily observed that the determination of tt at a given state of deformation F depends on

the knowledge of S and D. Similarly, the instantaneous tangent thermal tensor H depends on the

current deformation gradient.

3 Micromechanical Analysis

3.1 Model Description

Consider a multiphase composite material in which some or all phases are modeled as nonlinearly

thermoelastic materials. It is assumed that the composite possesses a periodic structure such that

a repeating cell can be defined. In Fig. 1, such a repeating cell is shown which consists of N,_NaN.y

rectangular parallelepiped subcells. The volume of each subcell is dah_l.r, where a,/_, "y are running
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indicesa = 1,..., 2Ca; 3 = 1,..., N_; "/= 1,..., N 7 in the three orthogonal directions, respectively.

The volume of the repeating cell is dhl where

N_ N_ N_

d=Ed,_ , h=Eh _ , l= E l7
a=l B=I 7:1

(17)

Any subcell can be filled in general by nonlinearly thermoelastic materials; with nonlinear unidi-

rectional continuous and/or discontinuous fiber reinforced composites, nonlinear porous materials,

and laminated materials being obtained by merely a proper selection of the geometrical dimensions

of the subcells and appropriate material descriptions.

The following formulation is based on a Lagrangian description of the motion of the composite.

To this end, let X denote the position of a material point in the undeformed configuration at time

t = 0. The location of this point in the deformed configuration is denoted by x. This current

position is given by

x = x +.(x, t) (18)

where u denotes the displacement vector.

The mJcromechanJcal model employs a first order expansion of the displacement increment in

the subcell (aft"/) in terms of the local coordinates ()_}-))_) )_(7)) located at the center of the

subcell.

= AwrY7)+ + + (19)

The increment of the deformation gradient in the subeeU is given according to (19) by

AF('_'y) = (20)

The average deformation gradient in the entire repeating cell is given by

dh-"7E E E de, h_ 17 AF (_7) (21)
a=l D=I 7=1

Similarly, let the increment of the first Piola-Kirchhoff stress tensor in subcell (af_/) be denoted

by AT (azT). Then the average increment of this stress tensor is given by

A_r= I Na N_ N'v
dh=-'_E E E d_ h, 17 AT (_"7} (22)

a=l B:I _=I
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Given these definitions we can establish, as shown in the next section, closed-form expressions

for the instantaneous concentration tensor that relates the increment of the deformation gradient

AF (a_7) in the subcell (a/3"7), to the average (or global) increment of the deformation gradient A_'.

Similarly, closed-form expression are established for the instantaneous thermal tensor that relates

the subcell's deformation gradient increment to the temperature increment. The derivation of such

relationships that link the local and global quantities is referred to as localization. The subsequent

use of these localization relationships can establish a relationship between the increment of the

global stress tensor AT and the increments of the global deformation gradient A_" and temperature,

0.

3.2 Interfacial Continuity of Displacement Increments

The development of the composite constitutive relationships are based on the satisfaction of equi-

librium within the subcell, and the fulfillment of the continuity of displacement and tractions at

the interfaces between the subceUs in the repeating cells, and between neighboring cells. The es-

tablishment of these relations in the present case of finite deformations is similar to that described

previously in the case of infinitesimal deformation (Aboudi, 1995). For a detailed explanation of

the two-dimensional infinitesimal case with 2 by 2 subcells see a recent book by Herakovich (1997).

For finite deformation, the conditions of continuity of displacement increments at the various

interfaces provide the following relations between the average deformation gradient increments and

the subcells deformation gradient increments.

Na

E d"AF(_laO_t)=dAfl'il i=1,2,3 ; t3----1,'--,N0 ; '7----1,"',N 7 (23)
o_=1

and

with

N_

E h0 AF(2t_7)= h AF'i2 i= 1,2,3 ; _---- 1,...,Na ; '7---- 1,'",N7 (24)
B=I

N_

y_ 17AF(_ c'07)=IhF/3 i=1,2,3 ; _-----1,'",Na ; /3=1,'",N_ (25)
3,=1

. Owi

= aTk-7, i,./= 1,2,3 (26)

(,_t_7)
w_ = v'_---2-' (27)

ax,
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Equations(23)-(25)form a set of 3(Nc,Nt_ + N,_N_ t + N_N_t) relations,

compact matrix form as follows

Aa AFa = J A_' (28)

where AFa contains the increments of the deformation gradients of all subcells as follows

AF, = [AF(lll), -.. , AF (N_'NON't)] (29)

and AF (a_7) are the appropriate matrices. It should be noted that the matrix AG (whose order is

3(NoN_+ N_N_ +N.N_) by 9N_N_N_)involv_ the g_ometric_ldimensionsof the subceUswit_n

the repeating cell only. The 3(N,_N_ + N,_N.y + N,_N.y) by 9 matrix J involves the geometrical

dimensions of the cell.

and can be written in a

3.3 Interracial Continuity of Traction Increments

From the continuity of the traction increments at the interfaces of the subcells within a repeating

cell, and at the interfaces between neighboring cells we have

AT(?_'t)= AT_ '_) c_ = 1,.--,N_ - 1; /3 : 1,-.-,Nt_ ; _t = 1,.-.,N_ (30)

AT(a_37) AT(a_7)"2i ="'2i _=l,"',Na; /3=l,"',Nt_-I ; _t=l,'",N_ (31)

(32)

with i = 1,2, 3. In these equations &,/3, _t are defined as follows

g

t 1 a=Ncx

[

___ _ ,8+1 /3<N_

L i /3=N.

-y+l _t<N 7 (33)#=
t 1 "_=N 7

These definitions ensure that for an interior subcen a (say) within the repeating cell, the neighboring

subcell in the X1 direction is the one labeled by c_+ 1 within this repeating cell. For _ -- Na ,on the

other hand, the neighboring subcell is within the next repeating cell whose first subcell is _ = 1.
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The traction incrementsin eqns. (30)-(32) are given by eqn (14). Consequently, conditions

(30)-(32) provide a set of 9NaN_N7 - 3(NaNj3 + NaN 7 + N_NT) relations between the tangent

tensors R (a_7) and H (a_7) of the various subeells. This set can be represented in a compact matrix

form as follows

AM AFs = GMA0 (34)

where the matrix AM (whose order is 9NaN_N v - 3(Nc, N[3 + NaN,.f + N_N,v) by 9NaN_Nc, )

involves the tangent tensors R (=_v) of the material in the subcclls, while GM is a 9NaN_N v -

3(NaN_ + NaN 7 + NzNv) by one matrix that assembles the thermal tensors H (a_v).

3.4 Overall Nonlinear Thermomechanical Constitutive Law

The combination of eqns(34) and (28) leads to the following system of linear algebraic equations

in the unknown local deformation gradient increments AFs:

,_ AF, = K A_ + (_ A0 (35)

where

[ I [°_= AM , K=

Ac J

where the order of the square matrix A is 9N,_N/3Na.

Solving eqn.(35) yields

where

AF, = A AF + G A0 (36)

A=_-IK

and

A is the requested current mechanical concentration tensor which is represented as a square ma-

trix whose order is 9NaN_N, v. Similarly, G is the current thermal concentration tensor which is

represented as 9Nc, N_ N 7 vector.

Let the concentration matrix A be partitioned into NaN_N 7 9-order square submatrices in the

form

A(m)

A= : (37)

A(N,_N_N-_)
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Similarlylet thethermalconcentrationvector G be partitioned as follows

G(lll)

G= :

G(N_NoN_)

(3s)

It follows from eqn. (36) that

(39)

Equation (39) expresses the deformation gradient increment in the subcell (a_7) in terms of the

applied average (macro) deformation gradient and temperature increments, via the mechanical and

thermal concentration tensors A (a_7) and G (a_), respectively.

Substitution of eqn.(39) into relation (14), that governs the nonlinear material behavior in

subcell (a/37), provides

AT (a_7) = R(a_)[ A (a_) AF + G (a_) A0 ] - H (_) A0 (40)

Consequently, in conjunction with eqn.(22), the following overall (macroscopic) nonlinear, anisotropic,

thermoelastic constitutive law governing the average behavior of the multiphased composite is es-

tablished

ZXT = R* n_' - H'AO (41)

where the current effective tangent tensor,R*, that relates the average first Piola-Kirchhoff incre-

ment, A'r, to the applied average deformation gradient increment, AF, is given in a closed-form

manner by

R*= 1 No NO N_
d'--_ E E E da h_ l_ R (_) A (a_7) (42)

a----1 _=1 7=1

whereas the current effective thermal tensor, H*, is given by

1 _v_ N0 N_

H'= do [ - ] (43)
a=l _=1 _=1

It is comforting to note, as one might expect, that the derived macroscopic effective constitutive

law (eq. 41) has an identical form as the constitutive relation for the constituent material given in

eq. (14). This is due to the fact that one can construct the macroscopic instantaneous stiffness and

thermal tensors (It*, H') in terms of their respective local ones, through the established evolving

mechanical and thermal concentration tensors (A and G).
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Once R* and H* have been determined at the current stage of deformation, one can obtain the

current average stress tensor T from the computed stress at the previous stage 'r[_i,_s according

to "r = T[_-evi_s + A'i'. Similarly, the current local F (a_} and average F deformation gradients

can be determined. Clearly, one must select an appropriately small load increment to ensure

convergence of the incremental solution. This increment will depend of course on the severity of

the material nonlinearity and the applied loading direction.

The derived constitutive law, eqns.(41), that governs the overall behavior of the nonlinear mul-

tiphase thermoelastic composite, has the advantage that it can be readily utilized irrespective of

whether loading symmetry exists or not, as well as without resorting to different boundary condi-

tion application strategies as in the case of the finite element unit cell procedure. Furthermore, the

availability of an analytical expression representing the macro response of the composite is partic-

ularly important when analyzing realistic structural components, since different loading conditions

exist throughout the structure, thus necessitating the application of the macromechanical equations

repeatedly at these locations.

By using eqns.(12) and (15) for the effective tangent tensors, we can readily establish the current

effective tangent tensor D* that relates the increment of the average of the second Piola-Kirchhoff,

A_, to the increment of the average Cauchy-Green deformation tensor, AC, in the form

where

D_ju • --1 (44)= Qo Fip

with S = "r[_T] -I being the averagesecond Piola-Kirchhoffstresstensor,and _'-iisthe inverse

of ?.

We conclude this section by noting that in the special case of infinitesimal deformations, the

present derivation reduces to that given previously by Aboudi (1995). In this special case the

material properties are constant for any applied deformation history, consequently the incremental

procedure is no longer required since R* and H ° become constants, since the concentration tensors

A and G no longer evolve.
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4 Validation and Results

4.1 Formulation and Constitutive Model Implementation Validation

In order to validate the above derived micromechanical model, one would like to compare its

predictive ability with actual experimental data or if none is available than at least with some

known analytical solution. To the authors knowledge, the only meaningful analytical comparison

that can be performed is with the composite spherical model, see ttashin (1985). Under hydrostatic

(isotropic) deformation, this spherical model provides the overall stress-deformation relation of a

porous media consisting of a finite-deforming matrix with an arbitrary concentration of spherical

voids. In the framework of the composite spherical model_ the stress-deformation response of a

single hollow sphere subjected to hydrostatic (isotropic) deformation coincides with that of the

effective response of the entire composite subjected to the same isotropic loading. It should be

noted, however, that the response of composites to other types of loading cannot be modeled by

the spherical assemblage representation. For an incompressible nonlinearly elastic matrix of the

Mooney-Rivlin type (e.g., see Table 1) with voids, the isotropic deformation of the porous medium

was established by Hashin (1985). Here we employ this spherical model and present resulting

response for three different classes of compressible nonlinearly elastic matrices with voids.

To this end, the isothermal response of a thick-wall spherical shell subjected to isotropic de-

formation at the outer surface, while keeping the inner surface traction-free, must be determined.

The reference geometry of the spherical shell (see Fig. 2a, which depicts for simplicity a half shell)

is defined by

A<R<_B, O<_O<__r, 0<__)<2_r (45)

in terms of spherical polar coordinates (R, O, ¢I)). The current geometry is defined by

a<r(R)<_b, 0--0, _b=¢, (46)

in terms of spherical polar coordinates (r, 0, ¢), and the deformation gradient is given by

= diag(dr r R) (47)F
dR' R'

Hence the principal stretches A1, As, _ corresponding to coordinate directions r, 0, 4) respectively

are
dr r

= = = (48)
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Given a strain energy function, W(Ax, A2,An), per unit undeformed volume of an isotropic

elastic compressible material, the equation of equilibrium yields a nonlinear second order ordinary

differential equation for the unknown function r(R):

d _OW OW
_(R _-_1 ) - 2R_'_" 2 = 0 (49)

Closed-form solutions for r(R) (involving two arbitrary constants) resulting from eqn.(49) are ob-

tainable for certain classes of nonlinear compressible materials. These classes of compressible ma-

terials have been recently summarized by Horgan (1995).

Once the function r(R) has been obtained for a given type of strain energy W we can pro-

ceed, given the spherical model, to establish the response of the nonlinear porous material under

hydrostatic loading. This solution is achieved by imposing the following two boundary conditions

(which determine the two constants in the closed-form solution) that express the fact that the

inner boundary, i.e., R = A, is traction-free, whereas at the outer surface (i.e., R = B) a uniform

deformation is imposed thus at the current configuration r(B) = b.

OW
T_ -- = O, R = A

0A1

= b, R = B

With the function r(R) completely known, we can determine, in particular, the radial stress

TIeR at the outer surface R = B. Hence we conclude from the average stress theorem (e.g.,

Aboudi(1991)) that the average radial component of the first Piola-Kirchhoff stress tensor in the

spherical shell is also given by the same expression T_(R = B). Consequently, the effective stress

- deformation relationship of the porous material has been established when it is subjected to a

hydrostatic (isotropic) loading defined by the ratio b/B. The initial volume concentration of the

pores is given by Aa/B 3 < 1.

In the following, three classes of nonlinearly elastic compressible materials are considered. Fol-

lowing Horgan(1995), these classes are referred to as classes I, II and III and are described in terms

of the three invariants il, i_, i3 of the stretch tensor. These invariants are given in terms of X_ as

follows:

ix = AI+A2+Aa

i2 = A1A2 + A1A3 + A2,,_I (51)

ia = AIA2Aa
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Note,everyclassexhibitsessentially a different material response as the strain energy within each

class has a different invariant functional dependence. By contrasting, for each class, the predicted

GMC response with that provided by the spherical model, we can assess the reliability of the

predicted GMC response under the present circumstances, and examine whether GMC's accuracy

is affected by various material classes.

4.1.1 Class I - Harmonic Material

Here the strain energy function is described by

W -- f(il) + e¢(i2 - 3) + c3(i3 - I), fH(il) _ 0 (52)

where f is an arbitrary function of the first invariant and ci are material constants. In this case

the solution of eqn.(49) is given by

77 (53)r(R) = _R + -_

Then imposing the boundary conditions given in eqns (50), the constants _ and r}can be determined.

Hence it is possible, according to the spherical model, to determine the resulting average radial

stress field in the porous material when subjected to an isotropic loading profile.

Following Ogden(1984) let us consider the following specific harmonic material:

2v-#. a
W = _1 + v - _/2 +/_ia (54)

where y and # are material constants, with p g -8y/5. In particular let us consider a matrix

material that is given by eqn.(54), and y =1,/_ =-4.

Alternatively, the simplest model for the porous material can be obtained from the described

scheme in Fig. 1 by selecting Na = 2, N_ -- 2, N 7 -- 2 subceUs in the repeating cell. In tiffs

configuration the pore is represented by a single subcell (c_ = 1,/_ = 1, ? = 1), while the remaining

seven subcells are comprised of the nonlinear matrix. The volume fraction of the voids is therefore

given by
dlhlll

v! = (dl + d2)(hl + h2)(ll + 12)

By choosing dl -- hi = ll and da = h2 = 12 a cubic equation is obtained for the relative dimension

dl/d2 in terms of the porosity v I. The resulting GMC response of the porous material can then

be compared to the closed-form solution obtained using the spherical model.

Fig. 2(b) illustrates this comparison between the response to hydrostatic loading as predicted

by the present micromechanical model (solid line) and that provided by the spherical model (dashed
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line). The figureshows the response for three volume fractions of porosities (or voids) namely v!

= 0.1, 0.3, 0.5. Also included in the figure and denoted by the label v! = 0, is the response of

the pure harmonic material itself. It can be clearly seen that the correspondence between the

two predictions is excellent in the small deformation regime and remains quite satisfactory as the

deformation increases. Furthermore, the comparison improves as the volume fraction is increased. It

should be noted, that in the framework of GMC, the pores are assumed to be arranged periodically

in the composite; whereas in the spherical model a gradation of pores of various sizes is assumed,

while maintaining the volume ratio A3/B 3. This difference in pore geometry idealization is believed

to be a primary factor behind any discrepancies between the two model predictions.

4.1.2 Class II

In this class of nonlinearly elastic compressible materials, the strain energy function is given by

W = c,(il - 3) + 9(i2) + c3(i3 - 1), g"(i2) # 0 (55)

where g is an arbitrary function of the second invariant and c_ are material constants. Given this

class the solution of eqn.(49) is given by

r(R) = 2 +
R"

(56)

(50), the constants _ and 77can beAgain, by imposing the boundary conditions given in eqns.

determined, and the average radial stress derived.

Following Murphy (1993), let us consider the following strain energy function:

1 - 1 9- 15
W = g(A + 2#)i22 4- _(2# -3_)i2-41a(ia-1)4-gA---_# (57)

Here _ and # are the Lame' constants of the material, with the specific values for the material

employed here being _ =2 and # =1.

Fig. 2(c) presents comparisons between the response to hydrostatic loading as predicted by

GMC and that provided by the spherical model for three volume fractions of porosities namely

v! = 0.1, 0.3, 0.5. Also included in the figure is the response of the pure matrix material denoted

by the label v! = 0. Once again, good correspondence between the two model predictions are

observed, with very good agreement occurring for volume fractions exceeding 0.3.
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4.1.3 Class III - Generalized Varga Material

Here the strain energy function for this class of materials is defined by

W=cl(il-3)+c2(i_-3)+h(i3), h"(i3) _0 (58)

where h is an arbitrary function of the third invariant and c./are again material constants. In this

case the solution of eqn.(49) is given by

r(r) = + (59)

and once again, imposing the boundary conditions in eqns.(50), the constants _ and r/ can be

determined, and the average radial stress derived.

For this class we will consider the following strain energy function discussed in Haughton(1987):

W=2#[Q-3- 1-i3 p] (60)
P

Here p isthe shear modulus of the material, and p isa parameter such that p > -I/3. The specific

material parameters used here are p ----Iand p = -0.I.

In keeping with previous discussions,comparisons between the response of the porous material

to hydrostatic loading as predicted by GMC and the spherical mode are now shown in Fig. 2(d)

for same three volume fractionsof porosities,i.e.,v! = 0.I, 0.3,0.5. Also, as done previously the

response of the generalized Varga material to hydrostatic loading (labeled by v] = 0) isincluded

to validate the particular constitutivemodel implementation. Clearly, the correspondence between

the predictions of the two models isonce again satisfactory,however, for this classthe comparison

has deteriorated relativeto the other two classesof materials.

Finally,the comparisons between GMC and the spherical model predictions shown in Fig.(2)

indicate the reliabilityof the present mieromechanical model for this type of loading. Also, ithas

been shown that the validityof the predicted response isnot significantlyaffected by the type of

chosen nonlinear material, although for some classesof materials the agreement between the two

methods appears slightlybetter than for others. This variation in agreement may be attributed

to l) the fact that in the spherical model each class of material produces its own unique spatial

dependence for the three invariantsii,i2,and i3 (seeequations (53),(56) and (59))or 2) to the need

for additional refinement in the GMC - RVE so as to better approximate the spherical nature of

the void, which ispresently represented as a cube, and thus better capture the spatial dependence.

Further investigation of these factorswill be reserved for future work.
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As a final comment relative to the validation of the implementation of GMC, it should men-

tioned that by taking all subcells to be of the same material, the obtained response from GMC

coincides with that of the monolithic material model itself. This is of course a necessary condition

that GMC must and does satisfy in all cases considered in this section as well as in the next

sections.

4.2 Results

4.2.1 Discontinuous Reinforced Composites

Let us consider a nonlinearly elastic particulate composite that consists of an aluminum alloy 8091

reinforced by SiC particles. Both materials are considered to be nonlinearly elastic and described

by Murnaghan's representation (see Table 1). The elastic moduli of the SiC particles and the

elastic constants of the aluminum alloy A1 8091 matrix were taken from Chen and Jiang (1993)

and are shown in Table 2.

"Ihble2: Material constants for SiC/AI 8091 system

Constituents

SiC

A1 8091

Material Constants (GPa)

A p l m n

97.66 188 -82.1 -310 -683

44.93 31 -218 -378 -435

In Fig. 3 the response of the resulting strongly bonded particulate composite is shown under

uniaxial stretching (that is, with/_11 = _1 being prescribed, while F22 = _2 = 1 and Fa3 = _3 = 1)

. Here both the response in tension and compression for two volume fractions of reinforcement,

namely v/= 0.3 and 0.5, and the corresponding response of the unreinforced nonlinear aluminum

matrix (labeled as v! = 0) are shown. The figure dearly exhibits the overall nonlinear behavior

of the composite and the significant stiffening influence that increasing the volume fraction of

reinforcement would have. It should be noted that under tensile stretching, the matrix (i.e., v! = O)

exhibits at a certain stage of loading (i.e., A2 _ 1.05) an instability in the sense that the stress-

deformation curve starts to decrease. All computed responses in Fig. 3 have been stopped at this

stage of loading. Note, as one might expect, with increasing reinforcement volume fraction, the

composite deformation at which matrix instability sets in is decreased.
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4.2.2 Continuous Reinforced Composites

Next consider a continuous fiber reinforced SiC/Al composite system with a fiber volume fraction

of 0.4. The material constants are again as specified in Table 2. The response of the continuously

reinforced system is shown in Fig. 4 given an applied uniaxial stress loading in the fiber direction

(i-direction, Fig. 4(a)) and in the transverse direction (2 -direction, Fig. 4(b)). Also included

in Fig. 4 are the response of the constituents, that is the fiber material, denoted by vI = 1,

Fig. 4a, (which is seen to be quite linear in the chosen range of deformation) and the highly

nonlinear unreinforced A1- matrix, denoted by vl --- 0 in Fig. 4(b). Figure 4 clearly exhibits

the nonlinearity and directionality effects of the fibrous composite, for instance note the six fold

increase in longitudinal load carrying capacity relative to that in the transverse direction. Similarly,

comparing Figs. 3 and 4 one immediately sees the advantage of continuous reinforcement scenarios.

Now assuming that the ultimate strain of the SiC fiber is identical to that of the ceramic SCS-6

fiber, namely 0.01 and following the evolution of the elastic fields in the fiber and matrix subcells, it

turns out that for the longitudinal loading case (loading in the fiber direction) the fiber will break

well within the linear axial stress-stretch region shown in Fig. 4(a). In this case the average stretch

_l is also equal to 1.01. Alternatively, in the case of transverse loading, fiber breakage does not

take place in the tensile portion (which is highly nonlinear) of the stress-stretch response shown in

Fig. 4(b). Nevertheless, just at the final point of the graph the local stretch in the matrix reaches

the value 1.0584 which is high. Thus it may be accurate to assume that the matrix phase will fail

before reaching the final value of the tensile portion of the transverse response shown in Fig. 4b. For

the transverse compressive response, fiber breakage occurs when the stretch in the matrix is rather

high (e.g. 0.963), namely within the nonlinear region. The average stretch _2 was 0.98. These

results indicate that for transverse loading, nonlinearity effects do indeed influence the response of

the composite before its failure and thus cannot be ignored. As a final remark, it is important to

remember that the significance of incorporating nonlinearity effects into the deformation and life

analysis of composites becomes even more critical in the presence of weak interfaces, since the local

stress and strain states around an inclusion are increased greatly due to the "opening-up" of such

a weak interfaces.
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4.2.3 Cellular Materials

It is well known that in cellular solids or foams the cells are either closed or open (Gibson and

Ashby,1988). An idealized structure of an open-cell foam is shown in Fig. 5(a), where the solid

material is distributed in little columns or beams which form the cell edges (as opposed to the

closed-cell case where the solid material is distributed in little plates which form the faces of the

cells). The nonlinear response of closed-cell foams can be modeled straight forwardly using GMC

by simply choosing the void as a single subcell surrounded by solid matrix material. Just such

a geometrical model was employed to predict the porous material responses shown in Fig. 2. It

is also, however, quite possible to model open-cell foams using GMC as well, and obtain their

nonlinear elastic response. To this end, referring to Figs. 1 and 5(b), consider a repeating cell

with N_ = 2, N_ = 2, N_ = 2 subcells. Now filling subcells (a,/_,_/)= (1,1,1), (1,2,1), (1,2,2)

and (2,2,1) with solid material and considering the remaining subcells (1,1,2), (2,1,1), (2,1,2)

and (2,2,2) to be comprised of voids, one can immediately obtain a repeating cell that idealizes

open-cell foams.

The volume fraction of voids in these open-cells structure is given by

dlhll2 + d2hlll + d2hl12 + d2h212

v! = (dl + d2)(hl + h2)(/1 +/2)

By choosing dl = h2 = II and d2 = hi = 12, one obtains a cubic equation for the relative dimension

dl/d2. Thus the latter can be determined for a given amount of porosity vl.

It was shown by Gibson and Ashby (1988) that an open-cell approach approximates the Young's

modulus of polymer foams quite well. This was accomplished using an expression based on me-

chanics (or a strength) of materials approach which takes explicitly into account the bending of

the open-cell walls caused by loading. Alternatively, GMC is a continuum based formulation and

consequently bending of the individual subcells is not directly accounted for, thereby potentially

restricting the maximum volume content of voids realizable. A comparison of the Gibson and

Ashby formula with GMC predictions based on the idealization shown in Fig. 5, verifies that

the prediction of Young's modulus for porous materials are in agreement with each other for foam

porosities in the range of 0 < v! < 0.6. For higher porosities the individual ligament aspect ratios

become such that the effect of bending on the cell walls is significant and must be accounted for.

Consequently, the modeling of open celled foams using GMC in compression is expected to be

valid for only lower volume fractions of porosities.

GMC predictions for the response of both an open- and closed-cell foam, subjected to a uniaxial
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stressloading (in the 1-direction), is illustrated in Fig. 6. The solid matrix is represented by the

strain energy function attributed to Blatz (1969) in Table 1. For a polyurethane rubber, the

material constants are (Blatz and Ko, 1962): /z = 0.234MPa, K = 3.27GPa, and k = 13.3. The

figure shows both the average uniaxial stress and average uniaxial lateral contraction versus the

longitudinal extension ratio of the foam rubber, given a 0.47 volume fraction of voids. Clearly,

the open-cell foam exhibits a weaker stiffness (or "softer" overall response) as compared to the

closed-cell case. Although this is expected, the figure illustrates the capability of GMC to predict

the nonlinear response of both types of porous materials.

5 Conclusions

The generalized method of cells (GMC) micromechanics methodology has been extended to pre-

dict the finite deformation behavior of nonlinear thermoelastic composites. The micromechanical

analysis relies on the tangential formulation of each phase of the composite (according to which the

stress increment is expressed in terms of the deformation gradient increment via the instantaneous

tangent tensor of the constituent material). This tangential formulation has been shown to possess

two significant advantages over the previously used secant approach, in that 1) the instantaneous

concentration tensors of the composite as well as its current effective tangent tensors can be estab-

lished and 2) at every increment of loading only a system of linear algebraic equations needs to be

solved.Verificationof thisnonlinearlyelasticGMC micromechanies model was accomplished by

comparing the responseofthreeclassesofporous materialswith thoseobtained from an analytical

sphericalmodel (whose predictionisvalidforhydrostaticloadingonly).Good agreement between

the analyticalsphericalmodel and GMC was shown forallthreeclassesofmaterialsgivenvarious

amounts ofporosities.Similarly,the responseofnonlinearlyelasticparticulateand continuousfiber

reinforcedSiC/AI composite systemswere calculatedand discussed.Resultsclearlyexhibitthe ef-

fectsofthe nonlinearityof the phases and stronglysuggestthe need forsuch a finitedeformation

micromechanics model as describedherein;particularlywhen one isinterestedinpredictingfailure

of such composite systems. Finallythe capabilityof GMC to predictthe nonlinearresponseof

opened- and closed-cellcellularsolidswas demonstrated.

With an eye toward the future,having establishedthe effectivebehavior of the composite at

any stageof loading,itisnow possibleto proceed and predictthe behavior of nonlinearlyelastic

laminatedmaterials.To thisend,we proposeto utilizethe analysisoflaminatedflexiblecomposites
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under finite deformationas presentedby C_ou(1992). This can be achieved by solely using the

nonlinear properties of the isotropic constituents of the composite in conjunction with the present

micromechanical analysis, without the need to employ a strain energy function that describes a

nonlinearly elastic anisotropic material. The definition of such a strain energy function naturally

involves numerous parameters, the determination of which might be very complicated. Similarly,

equations of state for thermoelastic rubber-like solids were recently discussed by Ogden(1992) and

can be implemented into the present methodology for the prediction of the thermoelastic response

of reinforced rubber-like solids which are capable of undergoing finite deformation.
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